Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.897
Filter
1.
Kyobu Geka ; 77(5): 361-363, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38720605

ABSTRACT

Prosthetic valve endocarditis (PVE) is rare but devastating. A 69-year old man admitted for active endocarditis caused by Streptococcus pasteurianus. Antibiotic therapy was started, but the patient developed bowel obstruction owing to cancer with multiple liver metastases, and underwent transverse colectomy. Following colectomy, antibiotic agent was given continued for 4 weeks after and mitral valve replacement( MVR) using a bioprosthesis was performed. Oral antibiotic therapy was continued for six months after MVR to avoid infection recurrence. One year after MVR, the size of multiple liver metastases increased despite oral anticancer drugs administration. A totally implantable central venous access port( CV port) was placed and intravenous chemotherapy was started for progressive metastatic colorectal cancer. But the CV port was removed due to device infection caused by multiple drug resistant Staphyrococcus lugdunensis one month later, but the patient developed prosthetic valve endocarditits( PVE) due to the same bacterium, that caused valve stenosis. Redo MVR was indicated because of progressive dyspnea and uncontrollable fever. The patient was discharged one month after redo MVR, but suffered carcinomatous peritonitis, and eventually died eight months post-discharge. Chemotherapy needs caution because of potential risk of PVE in patients with prosthetic valves, especially for those with a history of infectious endocarditis.


Subject(s)
Colonic Neoplasms , Heart Valve Prosthesis , Mitral Valve , Humans , Male , Aged , Mitral Valve/surgery , Colonic Neoplasms/surgery , Colonic Neoplasms/complications , Heart Valve Prosthesis/adverse effects , Fatal Outcome , Reoperation , Prosthesis-Related Infections/surgery , Prosthesis-Related Infections/etiology , Heart Valve Prosthesis Implantation , Endocarditis, Bacterial/surgery
2.
EuroIntervention ; 20(9): 579-590, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726714

ABSTRACT

BACKGROUND: Data on the performance of the latest-generation SAPIEN 3 Ultra RESILIA (S3UR) valve in patients who undergo transcatheter aortic valve replacement (TAVR) are scarce. AIMS: We aimed to assess the clinical outcomes, including valve performance, of the S3UR. METHODS: Registry data of 618 consecutive patients with S3UR and of a historical pooled cohort of 8,750 patients who had a SAPIEN 3 (S3) valve and underwent TAVR were collected. The clinical outcomes and haemodynamics, including patient-prosthesis mismatch (PPM), were compared between the 2 groups and in a propensity-matched cohort. RESULTS: The incidence of in-hospital death, vascular complications, and new pacemaker implantation was similar between the S3UR and the S3 groups (allp>0.05). However, both groups showed significant differences in the degrees of paravalvular leakage (PVL) (none-trivial: 87.0% vs 78.5%, mild: 12.5% vs 20.5%, ≥moderate: 0.5% vs 1.1%; p<0.001) and the incidence of PPM (none: 94.3% vs 85.1%, moderate: 5.2% vs 12.8%, severe: 0.5% vs 2.0%; p<0.001). The prevalence of a mean pressure gradient ≥20 mmHg was significantly lower in the S3UR group (1.6% vs 6.2%; p<0.001). Better haemodynamics were observed with the smaller 20 mm and 23 mm S3UR valves. The results were consistent in a matched cohort of patients with S3UR and with S3 (n=618 patients/group). CONCLUSIONS: The S3UR has equivalent procedural complications to the S3 but with lower rates of PVL and significantly better valve performance. The better valve performance of the S3UR, particularly in smaller valve sizes, overcomes the remaining issue of balloon-expandable valves after TAVR.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Heart Valve Prosthesis , Registries , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/methods , Female , Male , Aged, 80 and over , Aged , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/physiopathology , Treatment Outcome , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/diagnostic imaging , Prosthesis Design , Hemodynamics , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Hospital Mortality
3.
Laeknabladid ; 110(5): 247-253, 2024 May.
Article in Icelandic | MEDLINE | ID: mdl-38713559

ABSTRACT

INTRODUCTION: One of the most serious complications of surgical aortic valve replacement (SAVR) is stroke that can result in increased rates of complications, morbidity and mortality postoperatively. The aim of this study was to investigate incidence, risk factors and short-term outcome in a well defined cohort of SAVR-patients. MATERIALS AND METHOD: A retrospective study on 740 consecutive aortic stenosis patients who underwent SAVR in Iceland 2002-2019. Patients with stroke were compared with non-stroke patients; including preoperative risk factors of cardiovascular disease, echocardiogram-results, rate of early postoperative complications other than stroke and 30 day mortality. RESULTS: Mean age was 71 yrs (34% females) with 57% of the patients receiving stented bioprosthesis, 31% a stentless Freestyle®-valve and 12% a mechanical valve. Mean EuroSCORE-II was 3.6, with a maximum preop-gradient of 70 mmHg and an estimated valvular area of 0.73 cm2. Thirteen (1.8%) patients were diagnosed with stroke where hemiplegia (n=9), loss of consciousness (n=3) and/or aphasia (n=4) were the most common presenting symptoms. In 70% of cases the neurological symptoms resolved or disappeared in the first weeks and months after surgery. Only one patient out of 13 died within 30-days (7.7%). Stroke-patients had significantly lower BMI than non-stroke patients, but other risk factors of cardiovascular diseases, intraoperative factors or the rate of other severe postoperative complications than stroke were similar between groups. Total length of stay was 14 days vs. 10 days median, including 2 vs. 1 days in the ICU, in the stroke and non-stroke-groups, respectively. CONCLUSIONS: The rate of stroke after SAVR was low (1.8%) and in line with other similar studies. Although a severe complication, most patients with perioperative stroke survived 30 days postoperatively and in majority of cases neurological symptoms recovered.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Stroke , Humans , Female , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/diagnostic imaging , Male , Aged , Risk Factors , Retrospective Studies , Iceland/epidemiology , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/mortality , Heart Valve Prosthesis Implantation/instrumentation , Stroke/epidemiology , Stroke/mortality , Stroke/etiology , Incidence , Time Factors , Treatment Outcome , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Risk Assessment , Aged, 80 and over , Middle Aged
4.
Sci Rep ; 14(1): 10409, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710782

ABSTRACT

In transcatheter aortic valve implantation (TAVI), final device position may be affected by device interaction with the whole aortic landing zone (LZ) extending to ascending aorta. We investigated the impact of aortic LZ curvature and angulation on TAVI implantation depth, comparing short-frame balloon-expanding (BE) and long-frame self-expanding (SE) devices. Patients (n = 202) treated with BE or SE devices were matched based on one-to-one propensity score. Primary endpoint was the mismatch between the intended (HPre) and the final (HPost) implantation depth. LZ curvature and angulation were calculated based on the aortic centerline trajectory available from pre-TAVI computed tomography. Total LZ curvature ( k L Z , t o t ) and LZ angulation distal to aortic annulus ( α L Z , D i s t a l ) were greater in the SE compared to the BE group (P < 0.001 for both). In the BE group, HPost was significantly higher than HPre at both cusps (P < 0.001). In the SE group, HPost was significantly deeper than HPre only at the left coronary cusp (P = 0.013). At multivariate analysis, α L Z , D i s t a l was the only independent predictor (OR = 1.11, P = 0.002) of deeper final implantation depth with a cut-off value of 17.8°. Aortic LZ curvature and angulation significantly affected final TAVI implantation depth, especially in high stent-frame SE devices reporting, upon complete release, deeper implantation depth with respect to the intended one.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Transcatheter Aortic Valve Replacement , Transcatheter Aortic Valve Replacement/methods , Humans , Male , Female , Aged, 80 and over , Aged , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve Stenosis/surgery , Tomography, X-Ray Computed , Aorta/diagnostic imaging , Aorta/surgery , Treatment Outcome , Heart Valve Prosthesis , Retrospective Studies
5.
Clin Cardiol ; 47(5): e24272, 2024 May.
Article in English | MEDLINE | ID: mdl-38742736

ABSTRACT

Paravalvular leak (PVL) is an uncommon complication of prosthetic valve implantation, which can lead to infective endocarditis, heart failure, and hemolytic anemia. Surgical reintervention of PVLs is associated with high mortality rates. Transcatheter PVL closure (TPVLc) has emerged as an alternative to surgical reoperation. This method provides a high success rate with a low rate of complications. This article reviews the pathogenesis, clinical manifestation, diagnosis, and management of PVL and complications following TPVLc. Besides, we presented a case of a patient with severe PVL following mitral valve replacement, who experienced complete heart block (CHB) during TPVLc. The first TPVLc procedure failed in our patient due to possible AV-node insult during catheterization. After 1 week of persistent CHB, a permanent pacemaker was implanted. The defect was successfully passed using the previous attempt. Considering the advantages of TPVLc, procedure failure should be regarded as a concern. TPVLc should be performed by experienced medical teams in carefully selected patients.


Subject(s)
Cardiac Catheterization , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Mitral Valve , Prosthesis Failure , Humans , Mitral Valve/surgery , Mitral Valve/diagnostic imaging , Cardiac Catheterization/methods , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Heart Valve Prosthesis/adverse effects , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/methods , Mitral Valve Insufficiency/surgery , Mitral Valve Insufficiency/etiology , Echocardiography, Transesophageal , Male , Treatment Outcome , Female , Aged , Reoperation
6.
Port J Card Thorac Vasc Surg ; 31(1): 12-16, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38743522

ABSTRACT

There has been a worldwide rapid adoption of transcatheter aortic valve replacement (TAVR) as an alternative to surgical aortic valve replacement (SAVR) for patients with severe aortic stenosis. Currently, more TAVR explants with SAVRs are performed than TAVR-in TAV. TAVR explantation is a technically hazardous procedure mainly due to significant aortic neo-endothelialization which incorporates the TAVR valve. Surgical techniques for TAVR explantation are not well established and surgeon experience at present is limited. In this manuscript, we describe our technique for surgical explantation of transcatheter aortic bioprosthesis. Familiarity with the procedure and its clinical implications is essential for all cardiac surgeons.


Subject(s)
Aortic Valve Stenosis , Bioprosthesis , Device Removal , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Aortic Valve Stenosis/surgery , Bioprosthesis/adverse effects , Device Removal/methods , Heart Valve Prosthesis/adverse effects , Aortic Valve/surgery , Aortic Valve/pathology
7.
Eur J Cardiothorac Surg ; 65(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38710669

ABSTRACT

OBJECTIVES: The objective of this analysis was to assess the normal haemodynamic performance of contemporary surgical aortic valves at 1 year postimplant in patients undergoing surgical aortic valve replacement for significant valvular dysfunction. By pooling data from 4 multicentre studies, this study will contribute to a better understanding of the effectiveness of surgical aortic valve replacement procedures, aiding clinicians and researchers in making informed decisions regarding valve selection and patient management. METHODS: Echocardiograms were assessed by a single core laboratory. Effective orifice area, dimensionless velocity index, mean aortic gradient, peak aortic velocity and stroke volume were evaluated. RESULTS: The cohort included 2958 patients. Baseline age in the studies ranged from 70.1 ± 9.0 to 83.3 ± 6.4 years, and Society of Thoracic Surgeons risk of mortality was 1.9 ± 0.7 to 7.5 ± 3.4%. Twenty patients who had received a valve model implanted in fewer than 10 cases were excluded. Ten valve models (all tissue valves; n = 2938 patients) were analysed. At 1 year, population mean effective orifice area ranged from 1.46 ± 0.34 to 2.12 ± 0.59 cm2, and dimensionless velocity index, from 0.39 ± 0.07 to 0.56 ± 0.15. The mean gradient ranged from 8.6 ± 3.4 to 16.1 ± 6.2 mmHg with peak aortic velocity of 1.96 ± 0.39 to 2.65 ± 0.47 m/s. Stroke volume was 75.3 ± 19.6 to 89.8 ± 24.3 ml. CONCLUSIONS: This pooled cohort is the largest to date of contemporary surgical aortic valves with echocardiograms analysed by a single core lab. Overall haemodynamic performance at 1 year ranged from good to excellent. These data can serve as a benchmark for other studies and may be useful to evaluate the performance of bioprosthetic surgical valves over time. CLINICAL TRIAL REGISTRATION NUMBER: NCT02088554, NCT02701283, NCT01586910 and NCT01531374.


Subject(s)
Aortic Valve , Bioprosthesis , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Hemodynamics , Humans , Hemodynamics/physiology , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aged , Female , Male , Aged, 80 and over , Heart Valve Prosthesis Implantation/methods , Echocardiography , Middle Aged , Prosthesis Design
8.
J Cardiothorac Surg ; 19(1): 279, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715032

ABSTRACT

OBJECTIVE: Reports on long-term outcomes of surgical aortic valve replacement (AVR) for patients aged < 60 years are scarce in Japan. Hence, we aimed to evaluate these outcomes in patients aged < 60 years. METHODS: Between March 2000 and December 2020, 1477 patients underwent aortic valve replacement. In total, 170 patients aged < 60 years who underwent aortic valve replacement were recruited. Patients aged < 18 years were excluded. Patient data collected from the operative records and follow-up assessments were reviewed. RESULTS: The mean age was 49 ± 9 years, and 64.1% of patients were male. One-hundred-and-fifty-two patients (89.4%) underwent aortic valve replacement with a mechanical valve and 18 (10.6%) with a bioprosthetic valve. The mean follow-up period was 8.1 ± 5.5 years. No operative mortality occurred, and in-hospital mortality occurred in one patient (0.6%). Ten late deaths occurred, with seven cardiac-related deaths. The overall survival rate was 95.4 ± 1.7%, 93.9 ± 2.3%, 90.6 ± 3.9%, and 73.2 ± 11.8% at 5, 10, 15, and 20 years, respectively. Freedom from major bleeding was 96.4 ± 1.6% at 5, 10, and 15 years, and 89.0 ± 7.3% at 20 years. Freedom from thromboembolic events was 98.7 ± 1.3%, 97.3 ± 1.9%, 90.5 ± 4.5%, and 79.0 ± 11.3% at 5, 10, 15, and 20 years, respectively. Freedom from valve-related reoperation was 99.4 ± 0.6% at 5 years, 97.8 ± 1.7% at 10 and 15 years, and 63.9 ± 14.5% at 20 years. CONCLUSIONS: Patients aged < 60 years undergoing aortic valve replacement with a high mechanical valve implantation rate had favorable long-term outcomes.


Subject(s)
Aortic Valve , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Humans , Male , Middle Aged , Female , Heart Valve Prosthesis Implantation/methods , Aortic Valve/surgery , Adult , Bioprosthesis , Retrospective Studies , Postoperative Complications/epidemiology , Japan/epidemiology , Follow-Up Studies , Treatment Outcome , Survival Rate/trends , Age Factors , Time Factors , Hospital Mortality
9.
J Am Heart Assoc ; 13(9): e033846, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639328

ABSTRACT

BACKGROUND: Next-day discharge (NDD) outcomes following uncomplicated self-expanding transcatheter aortic valve replacement have not been studied. Here, we compare readmission rates and clinical outcomes in NDD versus non-NDD transcatheter aortic valve replacement with Evolut. METHODS AND RESULTS: Society of Thoracic Surgeons/American College of Cardiology TVT (Transcatheter Valve Therapy) Registry patients (n=29 597) undergoing elective transcatheter aortic valve replacement with self-expanding supra-annular valves (Evolut R, PRO, and PRO+) from July 2019 to June 2021 were stratified by postprocedure length of stay: ≤1 day (NDD) versus >1 day (non-NDD). Propensity score matching was used to compare risk adjusted 30-day readmission rates and 1-year outcomes in NDD versus non-NDD, and multivariable regression to determine predictors of NDD and readmission. Between the first and last calendar quarter, the rate of NDD increased from 45.4% to 62.1% and median length of stay decreased from 2 days to 1. Propensity score matching produced relatively well-matched NDD and non-NDD cohorts (n=10 549 each). After matching, NDD was associated with lower 30-day readmission rates (6.3% versus 8.4%; P<0.001) and 1-year adverse outcomes (death, 7.0% versus 9.3%; life threatening/major bleeding, 1.6% versus 3.4%; new permanent pacemaker implantation/implantable cardioverter-defibrillator, 3.6 versus 11.0%; [all P<0.001]). Predictors of NDD included non-Hispanic ethnicity, preexisting permanent pacemaker implantation/implantable cardioverter-defibrillator, and previous surgical aortic valve replacement. CONCLUSIONS: Most patients undergoing uncomplicated self-expanding Evolut transcatheter aortic valve replacement are discharged the next day. This study found that NDD can be predicted from baseline patient characteristics and was associated with favorable 30-day and 1-year outcomes, including low rates of permanent pacemaker implantation and readmission.


Subject(s)
Aortic Valve Stenosis , Patient Discharge , Patient Readmission , Propensity Score , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/trends , Patient Readmission/statistics & numerical data , Patient Readmission/trends , Male , Female , Aged, 80 and over , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/mortality , Aged , Patient Discharge/trends , Registries , Length of Stay/statistics & numerical data , Length of Stay/trends , Time Factors , Heart Valve Prosthesis , Postoperative Complications/epidemiology , Treatment Outcome , United States/epidemiology , Risk Factors , Aortic Valve/surgery , Retrospective Studies , Prosthesis Design , Risk Assessment
11.
JACC Cardiovasc Interv ; 17(8): 1007-1016, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38573257

ABSTRACT

BACKGROUND: Data on valve reintervention after transcatheter aortic valve replacement (TAVR) or surgical aortic valve replacement (SAVR) are limited. OBJECTIVES: The authors compared the 5-year incidence of valve reintervention after self-expanding CoreValve/Evolut TAVR vs SAVR. METHODS: Pooled data from CoreValve and Evolut R/PRO (Medtronic) randomized trials and single-arm studies encompassed 5,925 TAVR (4,478 CoreValve and 1,447 Evolut R/PRO) and 1,832 SAVR patients. Reinterventions were categorized by indication, timing, and treatment. The cumulative incidence of reintervention was compared between TAVR vs SAVR, Evolut vs CoreValve, and Evolut vs SAVR. RESULTS: There were 99 reinterventions (80 TAVR and 19 SAVR). The cumulative incidence of reintervention through 5 years was higher with TAVR vs SAVR (2.2% vs 1.5%; P = 0.017), with differences observed early (≤1 year; adjusted subdistribution HR: 3.50; 95% CI: 1.53-8.02) but not from >1 to 5 years (adjusted subdistribution HR: 1.05; 95% CI: 0.48-2.28). The most common reason for reintervention was paravalvular regurgitation after TAVR and endocarditis after SAVR. Evolut had a significantly lower incidence of reintervention than CoreValve (0.9% vs 1.6%; P = 0.006) at 5 years with differences observed early (adjusted subdistribution HR: 0.30; 95% CI: 0.12-0.73) but not from >1 to 5 years (adjusted subdistribution HR: 0.61; 95% CI: 0.21-1.74). The 5-year incidence of reintervention was similar for Evolut vs SAVR (0.9% vs 1.5%; P = 0.41). CONCLUSIONS: A low incidence of reintervention was observed for CoreValve/Evolut R/PRO and SAVR through 5 years. Reintervention occurred most often at ≤1 year for TAVR and >1 year for SAVR. Most early reinterventions were with the first-generation CoreValve and managed percutaneously. Reinterventions were more common following CoreValve TAVR compared with Evolut TAVR or SAVR.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Postoperative Complications , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Female , Humans , Male , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Postoperative Complications/surgery , Prosthesis Design , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Severity of Illness Index , Time Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Treatment Outcome , Incidence , Retreatment
12.
Biomater Sci ; 12(10): 2717-2729, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38619816

ABSTRACT

Polymeric heart valves (PHVs) present a promising alternative for treating valvular heart diseases with satisfactory hydrodynamics and durability against structural degeneration. However, the cascaded coagulation, inflammatory responses, and calcification in the dynamic blood environment pose significant challenges to the surface design of current PHVs. In this study, we employed a surface-initiated polymerization method to modify polystyrene-block-isobutylene-block-styrene (SIBS) by creating three hydrogel coatings: poly(2-methacryloyloxy ethyl phosphorylcholine) (pMPC), poly(2-acrylamido-2-methylpropanesulfonic acid) (pAMPS), and poly(2-hydroxyethyl methacrylate) (pHEMA). These hydrogel coatings dramatically promoted SIBS's hydrophilicity and blood compatibility at the initial state. Notably, the pMPC and pAMPS coatings maintained a considerable platelet resistance performance after 12 h of sonication and 10 000 cycles of stretching and bending. However, the sonication process induced visible damage to the pHEMA coating and attenuated the anti-coagulation property. Furthermore, the in vivo subcutaneous implantation studies demonstrated that the amphiphilic pMPC coating showed superior anti-inflammatory and anti-calcification properties. Considering the remarkable stability and optimal biocompatibility, the amphiphilic pMPC coating constructed by surface-initiated polymerization holds promising potential for modifying PHVs.


Subject(s)
Coated Materials, Biocompatible , Hydrogels , Phosphorylcholine , Surface Properties , Phosphorylcholine/chemistry , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Materials Testing , Polyhydroxyethyl Methacrylate/chemistry , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/pharmacology , Methacrylates/chemistry , Polymers/chemistry , Polymers/pharmacology , Heart Valve Prosthesis , Heart Valves/drug effects , Humans , Mice , Hydrophobic and Hydrophilic Interactions
13.
Inn Med (Heidelb) ; 65(5): 431-438, 2024 May.
Article in German | MEDLINE | ID: mdl-38635087

ABSTRACT

The pathophysiology of aortic valve diseases is of predominantly degenerative nature, characterized by calcific aortic valve stenosis, which is associated with a reduction in prognosis. The prevalence of aortic valve insufficiency also increases with advancing age. Timely causal treatment is crucial in the management of aortic valve diseases. Following the indication for intervention, the heart team plays a central role in evaluating the results and making therapeutic decisions that consider the patient's preferences. In the assessment of treatment options, considerations regarding the long-term perspective are particularly crucial, especially in younger patients. The most common therapeutic approach for aortic valve diseases is the introduction of a new valve prosthesis. In the majority of cases, this is now achieved through catheter-based implantation of a bioprosthetic heart valve, known as transcatheter aortic valve implantation (TAVI). Open surgical aortic valve replacement (AVR) is favored in younger patients with low surgical risk or in the case that TAVI is not feasible. In AVR, both biological and the longest-lasting mechanical prosthesis types are used. Surgical repair techniques are primarily applied in cases of aortic valve regurgitation. Notably, TAVI, as well as surgical procedures for the treatment of aortic valve diseases, have undergone significant advancements in recent years, including expanded indications for TAVI and, on the surgical side, in particular the development of minimally invasive surgical techniques.


Subject(s)
Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Aortic Valve/surgery , Aortic Valve/pathology , Heart Valve Prosthesis , Aortic Valve Disease/surgery , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis Implantation/instrumentation , Aortic Valve Stenosis/surgery , Aortic Valve Insufficiency/surgery , Aortic Valve Insufficiency/physiopathology , Bioprosthesis
14.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612836

ABSTRACT

One of the most important medical interventions for individuals with heart valvular disease is heart valve replacement, which is not without substantial challenges, particularly for pediatric patients. Due to their biological properties and biocompatibility, natural tissue-originated scaffolds derived from human or animal sources are one type of scaffold that is widely used in tissue engineering. However, they are known for their high potential for immunogenicity. Being free of cells and genetic material, decellularized xenografts, consequently, have low immunogenicity and, thus, are expected to be tolerated by the recipient's immune system. The scaffold ultrastructure and ECM composition can be affected by cell removal agents. Therefore, applying an appropriate method that preserves intact the structure of the ECM plays a critical role in the final result. So far, there has not been an effective decellularization technique that preserves the integrity of the heart valve's ultrastructure while securing the least amount of genetic material left. This study demonstrates a new protocol with untraceable cells and residual DNA, thereby maximally reducing any chance of immunogenicity. The mechanical and biochemical properties of the ECM resemble those of native heart valves. Results from this study strongly indicate that different critical factors, such as ionic detergent omission, the substitution of Triton X-100 with Tergitol, and using a lower concentration of trypsin and a higher concentration of DNase and RNase, play a significant role in maintaining intact the ultrastructure and function of the ECM.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Animals , Swine , Humans , Child , Heterografts , Transplantation, Heterologous , Tissue Engineering
15.
JAMA Netw Open ; 7(4): e247525, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38639933

ABSTRACT

Importance: Aggregated data and long-term follow-up in national health data registers offer the opportunity to compare the performance of mechanical aortic prostheses within the same population. Objective: To investigate the clinical performance of mechanical aortic valve prostheses. Design, Setting, and Participants: This nationwide cohort study included all 5224 patients who underwent primary mechanical aortic valve replacement in Sweden between January 1, 2003, and December 31, 2018. Statistical analysis was performed between May and September 2023. Exposures: Surgical aortic valve replacement with the On-X, Carbomedics, Bicarbon, Standard, Regent, Open Pivot, Masters, or Advantage valve models. Main Outcomes and Measures: The primary outcome was all-cause mortality, and secondary outcomes were reintervention, heart failure, major bleeding, stroke, and embolic events. Regression standardization was used to account for baseline differences. Results: Overall, 5224 patients (mean [SD] age, 56.8 [11.7] years; 3908 men [74.8%]) were included. Total follow-up time was 43 982 person-years (mean [SD], 8.4 [4.6] years; maximum, 17.2 years). After regression standardization, there was a significant difference in 10-year mortality between the Carbomedics model group (17%; 95% CI, 15%-18%), Regent model group (17%; 95% CI, 13%-20%), and Standard model group (17%; 95% CI, 14%-19%) compared with the Bicarbon model group (27%; 95% CI, 21%-34%). Conclusions and Relevance: In this cohort study of mechanical valve surgical aortic replacement outcomes in Sweden, the rate of all-cause mortality was higher in the Bicarbon group than in the Carbomedics, Regent, and Standard model groups. These findings warrant further research on the long-term clinical performance of the Bicarbon valve.


Subject(s)
Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Male , Humans , Middle Aged , Aortic Valve/surgery , Cohort Studies , Prosthesis Design
16.
Catheter Cardiovasc Interv ; 103(6): 1074-1077, 2024 May.
Article in English | MEDLINE | ID: mdl-38577923

ABSTRACT

Transcatheter aortic valve implantation (TAVI) has traditionally been indicated for the treatment of aortic stenosis. However, in this case report, we describe a successful TAVI procedure in a 46-year-old male patient who had previously undergone David aortic valve-sparing aortic root replacement for type 1 aortic dissection. The patient presented with aortic valve insufficiency 4 years after the initial surgery and was subsequently treated with a 34 mm Medtronic CoreValve Evolut R prosthesis via TAVI. This case highlights the feasibility of TAVI as a viable treatment option for postoperative aortic valve insufficiency in patients with prior ascending aortic or aortic arch surgery.


Subject(s)
Aortic Dissection , Aortic Valve Insufficiency , Aortic Valve , Blood Vessel Prosthesis Implantation , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Male , Aortic Dissection/surgery , Aortic Dissection/diagnostic imaging , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/surgery , Aortic Valve Insufficiency/physiopathology , Middle Aged , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Treatment Outcome , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis Implantation/adverse effects , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Prosthesis Design , Blood Vessel Prosthesis , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm/surgery , Aortic Aneurysm/diagnostic imaging , Aortography
17.
Catheter Cardiovasc Interv ; 103(6): 1004-1014, 2024 May.
Article in English | MEDLINE | ID: mdl-38577939

ABSTRACT

INTRODUCTION: Bicuspid aortic valve (BAV) stenosis is a complex anatomical scenario for transcatheter aortic valve implantation (TAVI). Favorable short-term clinical outcomes have been reported with TAVI in this setting, but long-term data are scarce. METHODS: We retrospectively included, in a single-center registry, patients with BAV stenosis who underwent TAVI before 2020. We compared patients treated with self-expanding valves (SEV) versus balloon-expandable valves (BEV). The primary endpoint was a composite of all-cause mortality, stroke and need for aortic valve (AV) reintervention at 3 years. Secondary endpoints included each component of the primary endpoint, cardiovascular mortality, permanent pacemaker implantation (PPI) rate, mean gradient and ≥moderate paravalvular leak (PVL) rate. RESULTS: A total of 150 consecutive patients (SEV = 83, BEV = 67) were included. No significant differences were reported between SEV and BEV groups for the primary composite endpoint (SEV 35.9% vs. BEV 32%, p = 0.66), neither for clinical secondary endpoints (all-cause mortality SEV 28.1% vs. BEV 28%, p = 0.988; cardiovascular mortality SEV 14.1% vs. BEV 20%, p = 0.399; stroke SEV 12.5% vs. BEV 6%, p = 0.342; need for AV reintervention SEV 0% vs. BEV 0%; PPI SEV 28.1% vs. BEV 24%, p = 0.620). A lower mean gradient persisted up to 3 years in the SEV group (SEV 8.8 ± 3.8 mmHg vs. BEV 10.7 ± 3.2 mmHg, p = 0.063), while no significant difference was found in the rate of ≥ moderate PVL (SEV 3/30 vs. BEV 0/25, p = 0.242). CONCLUSIONS: In this single center registry, we observed favorable 3-year clinical outcomes in nonselected BAV patients treated with different generation devices, without significant differences between patients receiving SEV or BEV.


Subject(s)
Aortic Valve Stenosis , Balloon Valvuloplasty , Bicuspid Aortic Valve Disease , Heart Valve Prosthesis , Prosthesis Design , Registries , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/mortality , Male , Female , Retrospective Studies , Treatment Outcome , Bicuspid Aortic Valve Disease/physiopathology , Bicuspid Aortic Valve Disease/diagnostic imaging , Bicuspid Aortic Valve Disease/mortality , Bicuspid Aortic Valve Disease/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/mortality , Time Factors , Aged , Balloon Valvuloplasty/adverse effects , Balloon Valvuloplasty/mortality , Aged, 80 and over , Risk Factors , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/abnormalities , Recovery of Function , Hemodynamics , Risk Assessment
18.
Catheter Cardiovasc Interv ; 103(6): 1069-1073, 2024 May.
Article in English | MEDLINE | ID: mdl-38584521
19.
Catheter Cardiovasc Interv ; 103(6): 924-933, 2024 May.
Article in English | MEDLINE | ID: mdl-38597297

ABSTRACT

BACKGROUND: Percutaneous pulmonary valve implantation (PPVI) is a non-surgical treatment for right ventricular outflow tract (RVOT) dysfunction. During PPVI, a stented valve, delivered via catheter, replaces the dysfunctional pulmonary valve. Stent oversizing allows valve anchoring within the RVOT, but overexpansion can intrude on the surrounding structures. Potentially dangerous outcomes include aortic valve insufficiency (AVI) from aortic root (AR) distortion and myocardial ischemia from coronary artery (CA) compression. Currently, risks are evaluated via balloon angioplasty/sizing before stent deployment. Patient-specific finite element (FE) analysis frameworks can improve pre-procedural risk assessment, but current methods require hundreds of hours of high-performance computation. METHODS: We created a simplified method to simulate the procedure using patient-specific FE models for accurate, efficient pre-procedural PPVI (using balloon expandable valves) risk assessment. The methodology was tested by retrospectively evaluating the clinical outcome of 12 PPVI candidates. RESULTS: Of 12 patients (median age 14.5 years) with dysfunctional RVOT, 7 had native RVOT and 5 had RV-PA conduits. Seven patients had undergone successful RVOT stent/valve placement, three had significant AVI on balloon testing, one had left CA compression, and one had both AVI and left CA compression. A model-calculated change of more than 20% in lumen diameter of the AR or coronary arteries correctly predicted aortic valve sufficiency and/or CA compression in all the patients. CONCLUSION: Agreement between FE results and clinical outcomes is excellent. Additionally, these models run in 2-6 min on a desktop computer, demonstrating potential use of FE analysis for pre-procedural risk assessment of PPVI in a clinically relevant timeframe.


Subject(s)
Cardiac Catheterization , Finite Element Analysis , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Models, Cardiovascular , Patient-Specific Modeling , Prosthesis Design , Pulmonary Valve , Humans , Pulmonary Valve/physiopathology , Pulmonary Valve/surgery , Pulmonary Valve/diagnostic imaging , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/adverse effects , Risk Assessment , Adolescent , Treatment Outcome , Risk Factors , Male , Child , Retrospective Studies , Female , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Young Adult , Predictive Value of Tests , Hemodynamics , Stents , Pulmonary Valve Insufficiency/physiopathology , Pulmonary Valve Insufficiency/surgery , Pulmonary Valve Insufficiency/diagnostic imaging , Pulmonary Valve Insufficiency/etiology , Ventricular Outflow Obstruction/physiopathology , Ventricular Outflow Obstruction/etiology , Ventricular Outflow Obstruction/diagnostic imaging , Clinical Decision-Making , Adult
20.
Catheter Cardiovasc Interv ; 103(6): 1015-1022, 2024 May.
Article in English | MEDLINE | ID: mdl-38577931

ABSTRACT

BACKGROUND: Previous studies have documented a high rate of implantation success with the ACURATE neo2 valve, as well as a reduction in paravalvular leak (PVL) compared to its predecessor, the ACURATE neo. However, there are no studies that have reviewed and compared the long-term clinical and hemodynamic outcomes of these patients. AIMS: This study aimed to evaluate the results of the ACURATE neo transcatheter aortic valve in a real-world context, and to compare the results of the outcomes of both generations of this device (ACURATE neo and ACURATE neo2), with a specific focus on procedural success, safety, and long-term effectiveness. METHODS: A prospective study including all consecutive patients treated with the ACURATE neo device in seven hospitals was conducted (Clinical Trials Identification Number: NCT03846557). The primary endpoint consisted of a composite of adverse events, including mortality, aortic insufficiency, and other procedural complications. As the second-generation device (ACURATE neo2) replaced the ACURATE neo during the study period, hemodynamic and clinical results before admission, at 30 days, and at 1 year of follow-up were compared between the two generations. RESULTS: A total of 296 patients underwent transcatheter aortic valve implantation with the ACURATE device, with 178 patients receiving the ACURATE neo and 118 patients receiving the ACURATE neo2. In the overall population, the absence of device success occurred in 14.5%. The primary reason for the absence of device success was the presence of para-valvular regurgitation ≥ 2. There were no instances of coronary occlusions, valve embolization, annulus rupture, or procedural deaths. ACURATE neo2 was associated with a significantly higher device success rate (91.7% vs. 82%, p = 0.04), primarily due to a significantly lower rate of para-valvular regurgitation, which remained significant at 1 year. CONCLUSION: The use of ACURATE neo and neo2 transcatheter aortic valves is associated with satisfactory clinical results and an extremely low rate of complications. The ACURATE neo2 enables a significantly higher device success rate, primarily attributed to a significant reduction in the rate of PVL.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Heart Valve Prosthesis , Hemodynamics , Prosthesis Design , Registries , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Female , Humans , Male , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/diagnostic imaging , Aortic Valve Insufficiency/physiopathology , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/diagnostic imaging , Postoperative Complications , Prospective Studies , Recovery of Function , Risk Factors , Spain , Time Factors , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...